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In this document, we present some additional statistics
and more examples of the FaceHD-100 dataset in Sec. 1,
ethics guidelines in Sec. 2, some implementation details in
Sec. 3, head reconstruction as the extension work of our
HRN (MV-HRN) in Sec. 4, more visualization results in
Sec. 5, and discussions about the limitations of the proposed
method and future work in Sec. 6.

1. The FaceHD-100 Dataset

This section provides more information about the
FaceHD-100 dataset. The capturing subjects include 95%
Asian, 3% white, and 2% black. Fig. 1 shows the age
and gender distribution of the dataset, in which the ages
of men and women are mainly concentrated between 17-35
years old, and the overall distribution is close to normal. In
Fig. 2, we give an example of the 9-view face images from
FaceHD-100, which shows the position distribution of the
9 cameras in our acquisition system. Fig. 3 presents some
9-view images and raw scans of different expressions from
FaceHD-100. While capturing, each subject was asked to
wear a hair covering to prevent hair from interfering.

We have signed an authorization agreement with each
capturing subject, who grants us the exclusive rights to dis-
tribute, perform, and use the captured data within the scope
of academic research (including for paper publication and
representation) and legitimate business. And we will re-
lease the dataset for research purposes only.

2. Ethics Guidelines

In addition to FaceHD-100, other face datasets we use in
the main paper and supplementary materials are licensed,
granting us the right to use the data for research purposes,
including publication of papers. Moreover, the face exam-
ples shown in the paper have also obtained the special au-
thorization of the capturing subjects or followed the pub-
lishable list of the corresponding dataset.
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Figure 1. The age and gender distribution of the FaceHD-100
dataset.

Figure 2. An example of the 9-view face images from the FaceHD-
100 dataset.
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(a) 9-view images (b) Mesh (c) Textured mesh

Figure 3. Some examples of different expressions from the FaceHD-100 dataset.
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Figure 4. The pipeline of acquiring ground-truth deformation map and displacement map from a single image and the corresponding raw
scan.

3. Implementation Details

3.1. Acquiring Ground-truth Detail Maps

As mentioned in Sec.3.3 in the main paper, to utilize the
3D data in our framework, we ought to transform the raw
scan to align to the image in BFM space. Fig. 4 shows the
pipeline of how we implement the transformation and ac-
quire the ground-truth detail maps for training. Given a face
image and its corresponding raw scan, we firstly employ the
base model to predict a coarse mesh M0 that is aligned to

the image in BFM space. Then we obtain 7 landmarks from
the raw scan and M0 respectively to achieve rough align-
ment [13], and the rigid ICP [16] algorithm is further used to
improve the alignment between the raw scan and M0. Once
we get the aligned scan, we are able to use the hierarchical
representation to fit the scan as mentioned in Sec.3.3 in the
main paper, and finally acquire the ground-truth deforma-
tion and displacement map for the input image (a mask is
used in training to remove the noises of eyes, nose and hair
area from raw scans). Note that since the base model is pre-
trained in our network, we only optimize the detail maps
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Figure 5. The pipeline of generating a new head model from the BFM model and FLAME model.
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Figure 6. Simplified head reconstruction process. (a) Input multi-
view images. (b) Predicted coarse head mesh, face, and hair de-
formation map. (c) deformed mesh.

and freeze the blendshape coefficients in the fitting process.

3.2. Loss Functions

As described in Sec.4.1 in the main paper, the training
data is composed of two types of images: in-the-wild im-
ages and in-the-lab images. The former is used for training
in a self-supervised manner, while the latter is combined
with ground-truth detail maps generated following Sec. 3.1
and used for training in a supervised manner.

We use R1 and R2 to indicate the face rendered from
M1 and M2 in Fig. 2 (main paper) respectively. Overall,
the loss functions that we utilize for training consist of :
(i) two photometric losses [4] Lphoto1 (between I and R1)
and Lphoto2 (between I and R2);
(ii) two perception-level losses [4] Lper1 (between I and
R1) and Lper2 (between I and R2);
(iii) a landmark loss [4] Llan (between I and R2);
(iv) a total variation loss [9] Ltv for the deformation map;
(v) an L1 regularization loss Lreg for the displacement
map;
(vi) a contour-aware loss Lcon between face mask and M1;
(vii) two adversarial losses [8] Ladv mid and Ladv high for
the deformation map and displacement map respectively;
(viii) an L1 loss Lmid for the deformation map and an L1
loss Lhigh for the displacement map in supervised training.

In summary, the joint loss for self-supervised and super-
vised training can be written as:

Lself = λ1(Lphoto1 + Lphoto2) + λ2(Lper1 + Lper2)

+ λ3Llan + λ4Ltv + λ5Lreg + λ6Lcon

+ λ7(Ladv mid + Ladv high),
(1)

Lsuper = Lself + λ8(Lmid + Lhigh), (2)

where λ1 = 1.9, λ2 = 0.2, λ3 = 1.6e− 4, λ4 = 5e3, λ5 =
10, λ6 = 20, λ7 = 0.2 and λ8 = 1 as default. We al-
ternately train the network with Lself for one iteration and
with Lsuper for one iteration.

4. Head Reconstruction
Due to the lack of completeness, the application sce-

narios of face reconstruction are often limited. There-
fore, we extend our method and make a small modifica-
tion to MV-HRN to achieve high-quality head reconstruc-
tion. Firstly, we combine BFM with FLAME and generate
a new head 3DMM model. Fig. 5 shows the pipeline. Given
a face model from BFM database, we firstly use a template
FLAME model and apply the flame-fitting [11] algorithm
to fit the face model. Then through a series of cropping and
merging operations, we can get the complete head model
that combines BFM and FLAME. By applying the process
above to the mean model, 80 identity blendshapes and 64
expression blendshapes of BFM, we can obtain a new head
3DMM, which shares the same group of coefficients with
BFM. We continue to use the albedo basis of BFM for the
face area of the new head models. Since we will only cal-
culate the photometric loss for the face area, the albedo of
the rest area of the head model is set to a fixed value. In
addition, we unwrap the new head model and recalculate a
new set of UV coordinates.

To adapt the new head model, we modify the MV-HRN
by splitting the deformation map into the face deformation
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Figure 7. Some head reconstruction results of our method on selfie data.

map and hair deformation map, where the former is used to
deform the face region and the latter is used to deform the
hair region. Besides, we replaced the face mask in contour-
aware loss with the head mask, which is predicted by a pre-
trained head segmentation network [12]. By using the face
and hair deformation map to fit the head mesh to the head
masks, we can get a head model that is well aligned to the
input multi-view head images. Note that since there are no
3D priors to guide the deformation of the hair region, we
apply a larger weight of Ltv for the hair deformation map
to ensure the smoothness of the hair region. Fig. 6 shows
a simplified process of reconstructing the head mesh us-
ing MV-HRN. For the texture, we firstly acquire the coarse
texture maps from each view by employing the differen-
tiable rendering [10] mentioned in Sec. 3.2 (main paper).
Then we blend the multi-view textures and a template head
texture following [7] to obtain the complete head texture
map. Combining the predicted head mesh and the head tex-
ture map, we achieve high-quality head reconstruction from
sparse-view images. Fig. 7 shows some head reconstruction
results of our method on selfie data.

Due to the deficiency of prior information on hair regions
and the limitation of mesh density, our head reconstruction

Method Cooperative Indoor Outdoor
Mean Std. Mean Std. Mean Std.

Tran et al. [14] 1.93 0.27 2.02 0.25 1.86 0.23
Booth et al. [2] 1.82 0.29 1.85 0.22 1.63 0.16

Genova et al. [6] 1.50 0.13 1.50 0.11 1.48 0.11
GANFit [5] 0.95 0.107 0.94 0.106 0.94 0.106

Ours 0.86 0.108 0.87 0.105 0.83 0.104

Table 1. The multi-view quantitative results on the MICC Dataset
using point-to-plane distance (mm).

is currently only suitable for handling portraits with simple
hairstyles.

5. More Results
5.1. Comparisons on the MICC dataset

We follow GANFit and test our method on the MICC
dataset [1]. Table 1 gives the results.

5.2. More Visualization Results

We provide qualitative comparison of single-view face
reconstruction results with more methods (FDS [3] and
LAP [15]) in Fig. 8, Fig. 9, and Fig. 10. Our approach con-



sistently outperforms other methods on FFHQ, REALY and
Facescape datasets with high-fidelity and fine details.

6. Limitations and Future Work
Limitations. We summarize two limitations of our method.
On one hand, the generated facial details of our method are
static and cannot vary with expression. One possible way is
to collect multiple expressions of the same person, and then
use HRN to obtain mid- and high-frequency details from
each expression and build a set of mid- and high-frequency
detail blendshapes. Finally, we are enabled to use blend-
shape coefficients to generate dynamic facial details.

On the other hand, considering the pixel-wise learning
strategy and the powerful representation ability, our pro-
posed method cannot handle severe occlusions well. Fig. 11
presents some visual results of the proposed HRN on oc-
cluded face images from FFHQ. Our method exhibits ro-
bustness to some images with slightly occluded faces (first
two rows) but produces inaccurate results for heavily oc-
cluded faces (last three rows).
Future Work. Beyond addressing the limitations discussed
above, we will further extend our method to achieve ac-
curate, high-fidelity and animatable head avatar genera-
tion from in-the-wild images for future work, conquer-
ing some challenging problems (such as modeling complex
hairstyles).
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Figure 8. More visual comparisons on FFHQ dataset.
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Figure 9. More visual comparisons on REALY dataset.
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Figure 10. More visual comparisons on FaceScape dataset.



(a) Input (b) Ours (c) Predicted mesh
Figure 11. Visual results of our method on some occluded face images from FFHQ.
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